click here
The Moon has fascinated mankind throughout the ages. By simply viewing with the naked eye, one can discern two major types of terrain: relatively bright highlands and darker plains. By the middle of the 17th century, Galileo and other early astronomers made telescopic observations, noting an almost endless overlapping of craters. It has also been known for more than a century that the Moon is less dense than the Earth. Although a certain amount of information was ascertained about the Moon before the space age, this new era has revealed many secrets barely imaginable before that time. Current knowledge of the Moon is greater than for any other solar system object except Earth. This lends to a greater understanding of geologic processes and further appreciation of the complexity of terrestrial planets.
On July 20, 1969, Neil Armstrong became the first man to step onto the surface of the Moon. He was followed by Edwin Aldrin, both of the Apollo 11 mission. They and other moon walkers experienced the effects of no atmosphere. Radio communications were used because sound waves can only be heard by travelling through the medium of air. The lunar sky is always black because diffraction of light requires an atmosphere. The astronauts also experienced gravitational differences. The moon's gravity is one-sixth that of the Earth's; a man who weighs 180 lbf (pound-force) on Earth weighs only 30 lbf on the Moon. (The equivalent metric weight (or force) is the Newton, where 4.45 Newtons equal one pound-force.)
The Moon is 384,403 kilometers (238,857 miles) distant from the Earth. Its diameter is 3,476 kilometers (2,160 miles). Both the rotation of the Moon and its revolution around Earth takes 27 days, 7 hours, and 43 minutes. This synchronous rotation is caused by an unsymmetrical distribution of mass in the Moon, which has allowed Earth's gravity to keep one lunar hemisphere permanently turned toward Earth. Optical librations have been observed telescopically since the mid-17th century. Very small but real librations (maximum about 0°.04) are caused by the effect of the Sun's gravity and the eccentricity of Earth's orbit, perturbing the Moon's orbit and allowing cyclical preponderances of torque in both east-west and north-south directions.
The Moon has fascinated mankind throughout the ages. By simply viewing with the naked eye, one can discern two major types of terrain: relatively bright highlands and darker plains. By the middle of the 17th century, Galileo and other early astronomers made telescopic observations, noting an almost endless overlapping of craters. It has also been known for more than a century that the Moon is less dense than the Earth. Although a certain amount of information was ascertained about the Moon before the space age, this new era has revealed many secrets barely imaginable before that time. Current knowledge of the Moon is greater than for any other solar system object except Earth. This lends to a greater understanding of geologic processes and further appreciation of the complexity of terrestrial planets.
On July 20, 1969, Neil Armstrong became the first man to step onto the surface of the Moon. He was followed by Edwin Aldrin, both of the Apollo 11 mission. They and other moon walkers experienced the effects of no atmosphere. Radio communications were used because sound waves can only be heard by travelling through the medium of air. The lunar sky is always black because diffraction of light requires an atmosphere. The astronauts also experienced gravitational differences. The moon's gravity is one-sixth that of the Earth's; a man who weighs 180 lbf (pound-force) on Earth weighs only 30 lbf on the Moon. (The equivalent metric weight (or force) is the Newton, where 4.45 Newtons equal one pound-force.)
The Moon is 384,403 kilometers (238,857 miles) distant from the Earth. Its diameter is 3,476 kilometers (2,160 miles). Both the rotation of the Moon and its revolution around Earth takes 27 days, 7 hours, and 43 minutes. This synchronous rotation is caused by an unsymmetrical distribution of mass in the Moon, which has allowed Earth's gravity to keep one lunar hemisphere permanently turned toward Earth. Optical librations have been observed telescopically since the mid-17th century. Very small but real librations (maximum about 0°.04) are caused by the effect of the Sun's gravity and the eccentricity of Earth's orbit, perturbing the Moon's orbit and allowing cyclical preponderances of torque in both east-west and north-south directions.